Differences in muscle function during walking and running at the same speed.
نویسندگان
چکیده
Individual muscle contributions to body segment mechanical energetics and the functional tasks of body support and forward propulsion in walking and running at the same speed were quantified using forward dynamical simulations to elucidate differences in muscle function between the two different gait modes. Simulations that emulated experimentally measured kinesiological data of young adults walking and running at the preferred walk-to-run transition speed revealed that muscles use similar biomechanical mechanisms to provide support and forward propulsion during the two tasks. The primary exception was a decreased contribution of the soleus to forward propulsion in running, which was previously found to be significant in walking. In addition, the soleus distributed its mechanical power differently to individual body segments between the two gait modes from mid- to late stance. In walking, the soleus transferred mechanical energy from the leg to the trunk to provide support, but in running it delivered energy to both the leg and trunk. In running, earlier soleus excitation resulted in it working in synergy with the hip and knee extensors near mid-stance to provide the vertical acceleration for the subsequent flight phase in running. In addition, greater power output was produced by the soleus and hip and knee extensors in running. All other muscle groups distributed mechanical power among the body segments and provided support and forward propulsion in a qualitatively similar manner in both walking and running.
منابع مشابه
Kinetic and Kinematic Variables in Middle-Aged Women with Normal and Genu Varum Knee Angle with Emphasis on Walking and Running Activities
Purpose: The purpose of this study is to examine the differences of kinetic and kinematic variables in middle-aged women with genu varum and normal knee angle during walking and running. Methods: Eight middle-aged women with genu varum (age: 45.12 ±12.74 y, height: 160.62 ± 5.26 cm, weight: 71.75 ± 16.38 kg, right tibiofemoral angle: -4 ± 3.9, left tibiofemoral angle: -5.1 ± 4.6) and 7 wi...
متن کاملMotor patterns in human walking and running.
Despite distinct differences between walking and running, the two types of human locomotion are likely to be controlled by shared pattern-generating networks. However, the differences between their kinematics and kinetics imply that corresponding muscle activations may also be quite different. We examined the differences between walking and running by recording kinematics and electromyographic ...
متن کاملEffect of different walking speed on the gait kinematics of individuals with knee varus
The purpose of current study was to investigate the spatio-temporal gait parameters and knee varus angle during walking at different speeds in young with knee varus. 18 subjects with varus deformity classified at grade 3 of bowleg and 17 healthy subjects, volunteered to participate in this study. The following variables include stance, swing, double support and cycle time, cadence, stride le...
متن کاملThe effect of increasing running speed on three-dimensional changes of lower limb joint angles in open motor chain and swing phase
Objective Running is known as one of the most popular sports for which there is no time and space limit. Recently, due to lifestyle changes, the use of treadmills for walking and running has increased. However, the biomechanical differences in coordination between running on a treadmill at different speeds have not been sufficiently addressed. The aim of this study was to investigate the effect...
متن کاملSwing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions.
There has been no consistent explanation as to why humans prefer changing their gait from walking to running and from running to walking at increasing and decreasing speeds, respectively. This study examined muscle activation as a possible determinant of these gait transitions. Seven subjects walked and ran on a motor-driven treadmill for 40s at speeds of 55, 70, 85, 100, 115, 130 and 145% of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 39 11 شماره
صفحات -
تاریخ انتشار 2006